

CE Marking Association, The Great Barn, Wootton Park, Alcester Road, Wootton Wawen, Henley-in-Arden, Warwickshire, B95 6HJ Tel: 01564 792349

**Report Date:** 

1<sup>st</sup> April 2019

# **EMC TEST REPORT**

| Client:          | TEAL PATENTS LTD          | Report Number: 60561-A-R0                                       |
|------------------|---------------------------|-----------------------------------------------------------------|
|                  | Unit 2 Waterloo Avenue    |                                                                 |
|                  | Chelmsley Wood Indust     | rial Estate                                                     |
|                  | BIRMINGHAM                |                                                                 |
|                  | West Midlands             |                                                                 |
|                  | United Kingdom (LIK)      |                                                                 |
|                  | B37 600                   |                                                                 |
| Contract         | Mr Neel Devile            |                                                                 |
| Contact:         |                           |                                                                 |
|                  |                           |                                                                 |
| Item Tested:     | Hand Wash Unit            |                                                                 |
|                  |                           |                                                                 |
| Model:           | Super Stallette +         |                                                                 |
|                  |                           |                                                                 |
| Sorial Number    | 2000300                   |                                                                 |
| Serial Nulliber. | 2009399                   |                                                                 |
|                  |                           |                                                                 |
| Overall Spec:    | EN 61000-6-1: 2007 - G    | eneric standards - Immunity for residential, commercial and     |
|                  | light-industrial environm | ents                                                            |
|                  | EN 61000-6-3: 2007+A1     | I: 2011+AC: 2012 - Generic standards - Emission standard for    |
|                  | residential, commercial   | and light-industrial                                            |
|                  | EN 61000-3-2: 2014 - Li   | imits for harmonic current emissions (equipment input current ≤ |
|                  | 16 A per phase)           |                                                                 |
|                  | EN 61000-3-3: 2013 – v    | oltage changes, voltage fluctuations and flicker in public low- |
|                  | voltage supply systems,   | for equipment with rated current $\leq$ 16 A per phase          |
| Specifications:  | EN 61000-6-3              | Emissions – Low voltage AC mains port                           |
| •••••••••        | EN 61000-6-3              | Emissions – Enclosure port                                      |
|                  | EN 61000-3-2              | Harmonic Current Emissions                                      |
|                  | EN 61000-3-3              | Voltage Change, Voltage Fluctuations and Flicker                |
|                  | EN 61000-4-2              | Immunity to Electrostatic Discharge                             |
|                  | EN 61000-4-3              | Immunity to Badiated Fields                                     |
|                  | EN 61000-4-4              | Immunity to Fast Transient Bursts                               |
|                  | EN 61000-4-5              | Immunity to Surges                                              |
|                  | EN 61000-4-6              | Immunity to Conducted Disturbances                              |
|                  | EN 61000-4-11             | Immunity to Voltage Dips and Short Interruptions                |
|                  |                           |                                                                 |
| Written D.       | Chria Zivadar             | Signad                                                          |
| written by:      |                           | Signed:                                                         |

**Test Dates:** 

25th Feb & 12th March 2019

| TEST SUMMARY              |                                        |                                                                                                                                                                                                                                                                                                                            |  |  |
|---------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Equipme                   | nt Under Test:                         | Super Stallette +                                                                                                                                                                                                                                                                                                          |  |  |
| Equipment<br>Description: |                                        | The Super Stallette Plus is a lightweight portable unit designed to be used in a variety of environments. By placing your hands in the basin the infrared sensor is triggered to start the wash cycle. The wash cycle delivers low pressure water that is instantly heated to temperatures of 40°C to 43°C for 10 seconds. |  |  |
| Test Date                 | es(s):                                 | 25 <sup>th</sup> Feb & 12 <sup>th</sup> March 2019                                                                                                                                                                                                                                                                         |  |  |
| Tested by                 | y:                                     | Chris Zivoder, Senior Product Compliance Engineers at the CE Marking Association                                                                                                                                                                                                                                           |  |  |
| Test Obje                 | ective/Specifica                       | tion:                                                                                                                                                                                                                                                                                                                      |  |  |
| The object out in EN 6    | ive of the EMC ass<br>61000-6-1 and EN | sessment was to assess the performance with respect to the requirements set 61000-6-3 for the Super Stallette Plus                                                                                                                                                                                                         |  |  |
| Summary                   | y of Test Result                       | 6                                                                                                                                                                                                                                                                                                                          |  |  |
| <u>Result</u>             | <u>Spec</u>                            | <b>Requirements</b>                                                                                                                                                                                                                                                                                                        |  |  |
| Pass                      | EN 61000-6-3                           | Emissions – Low voltage AC mains port                                                                                                                                                                                                                                                                                      |  |  |
| Pass                      | EN 61000-6-3                           | Emissions – Enclosure port                                                                                                                                                                                                                                                                                                 |  |  |
| Pass                      | EN 61000-3-2                           | Harmonic Current Emissions                                                                                                                                                                                                                                                                                                 |  |  |
| Pass                      | EN 61000-3-3                           | Voltage Change, Voltage Fluctuations and Flicker                                                                                                                                                                                                                                                                           |  |  |
| Pass                      | EN 61000-4-2                           | Immunity to Electrostatic Discharge                                                                                                                                                                                                                                                                                        |  |  |
| Pass                      | EN 61000-4-3                           | Immunity to Radiated Fields                                                                                                                                                                                                                                                                                                |  |  |
| Pass                      | EN 61000-4-4                           | Immunity to Fast Transient Bursts – AC mains terminal                                                                                                                                                                                                                                                                      |  |  |
| Pass                      | EN 61000-4-5                           | Immunity to Surges – AC mains terminal                                                                                                                                                                                                                                                                                     |  |  |
| Pass                      | EN 61000-4-6                           | Immunity to Conducted Disturbances – AC mains terminal                                                                                                                                                                                                                                                                     |  |  |
| Pass                      | EN 61000-4-11                          | Immunity to Voltage Dips and Interruptions                                                                                                                                                                                                                                                                                 |  |  |
|                           |                                        |                                                                                                                                                                                                                                                                                                                            |  |  |

### Notes:

- 1. The Super Stallette Plus was tested at the CE Marking Association, The Great Barn, Wootton Park, Alcester Road, Wootton Wawen, B95 6HJ.
- 2. The power frequency magnetic field test wasn't performed on the basis that the EUT doesn't include any devices/components that are deemed to be magnetically sensitive.
- 3. The highest internal generating frequency was specified as being < 108MHz therefore radiated emissions tests were performed up to 1GHz.

This report is for the exclusive use of CE Marking Association's (CMA) Client and is provided in accordance with the agreement between CMA and its Client. CMA's responsibility is limited to the terms and conditions of the agreement & assumes no liability to any party for any loss, expense or damage occasioned by the use of this report. Only the Client is authorised to permit copying or distribution of this report and then only in its entirety. The observations and test results in this report are relevant only to the sample tested. Signed paper copies are considered the official copy of the report. Unsigned and electronic reports are considered non-official uncontrolled copies.

| TEST PLAN    |                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                               |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| EUT:         | Super Stallet                                                                                                                                                                                                                                                                                                                                                                                                  | te +                                     |                                                                                                                                                                                               |  |  |  |
| Spec:        | <ul> <li>EN 61000-6-1: 2007 - Generic standards - Immunity for residential, commercial and light-industrial environments</li> <li>EN 61000-6-3: 2007+A1: 2011 - Generic standards - Emission standard for residential, commercial and light-industrial environments</li> <li>EN 61000-3-2: 2013 – Harmonic current emissions</li> <li>EN 61000-3-3: 2014 - Voltage change, fluctuations and flicker</li> </ul> |                                          |                                                                                                                                                                                               |  |  |  |
| Stan         | dard                                                                                                                                                                                                                                                                                                                                                                                                           | Description                              | Details                                                                                                                                                                                       |  |  |  |
| EN 61000-6-3 | – Table 2                                                                                                                                                                                                                                                                                                                                                                                                      | Emissions – Low voltage AC mains<br>port | 150kHz to 30MHz                                                                                                                                                                               |  |  |  |
| EN 61000-6-3 | – Table 1                                                                                                                                                                                                                                                                                                                                                                                                      | Emissions – Enclosure port               | 30MHz – 1000MHz (E Field)                                                                                                                                                                     |  |  |  |
| EN 61000-3-2 |                                                                                                                                                                                                                                                                                                                                                                                                                | Harmonics current emissions              | Class A limits (≥75Watt limit applies)                                                                                                                                                        |  |  |  |
| EN 61000-3-3 | – Clause 5                                                                                                                                                                                                                                                                                                                                                                                                     | Voltage change and fluctuations          | Maximum voltage change $(d_{max})$ caused by manual switching Annex B and Voltage fluctuation as specified in Annex A (A.12).                                                                 |  |  |  |
| EN 61000-6-1 | – Table 1                                                                                                                                                                                                                                                                                                                                                                                                      | ESD                                      | 4kV Contact, 8kV Air Discharge<br>Performance criteria B                                                                                                                                      |  |  |  |
| EN 61000-6-1 | – Table 1                                                                                                                                                                                                                                                                                                                                                                                                      | RF Electromagnetic Fields                | 80 – 1000 MHz at 3V/m,<br>1.4 GHz – 2 GHz at 3V/m<br>2 GHz – 2.7 GHz at 1V/m<br>Amplitude Modulation 1kHz at 80% sine<br>Performance criteria A                                               |  |  |  |
| EN 61000-6-1 | – Table 4                                                                                                                                                                                                                                                                                                                                                                                                      | Voltage dips and short interruptions     | 0% during 0.5 cycle (Performance criteria B)<br>0% during 1 cycles (Performance criteria B)<br>70% during 25 cycles (Performance criteria C)<br>0% during 250 cycles (Performance criteria C) |  |  |  |
| EN 61000-6-1 | – Table 4                                                                                                                                                                                                                                                                                                                                                                                                      | Fast Transient Bursts                    | AC power Ports - +/-1kV 5/50ns 5kHz<br>Performance criteria B                                                                                                                                 |  |  |  |
| EN 61000-6-1 | – Table 4                                                                                                                                                                                                                                                                                                                                                                                                      | Conducted RF Immunity                    | AC power Ports - 150kHz - 80MHz at 3V,<br>Amplitude Modulation 1kHz at 80% sine<br>Performance criteria A                                                                                     |  |  |  |
| EN 61000-6-1 | – Table 4                                                                                                                                                                                                                                                                                                                                                                                                      | Surges                                   | AC power Ports<br>Line to line +/- 1.0kV<br>Line to ground +/-2.0kV<br>Performance criteria B                                                                                                 |  |  |  |

# Contents

| 1.  | The Equipment Under Test (EUT)                                   | 5  |
|-----|------------------------------------------------------------------|----|
| 2.  | Performance Criteria for Immunity Tests                          | 6  |
| 3.  | EMC Modifications                                                | 7  |
| 4.  | Emissions – Low Voltage AC Port                                  | 8  |
| 5.  | Radiated Emissions                                               | 13 |
| 6.  | Mains Harmonic Emissions                                         | 16 |
| 7.  | Voltage Change and Voltage Fluctuations                          | 18 |
| 8.  | Immunity to Electrostatic Discharge - Enclosure Port             | 21 |
| 9.  | Immunity to RF Electromagnetic Fields – Enclosure Port           | 22 |
| 10. | Immunity to Fast Transient Bursts – Input AC Port                | 23 |
| 11. | Immunity to Surges – Input AC Port                               | 24 |
| 12. | Immunity to Conducted RF Disturbances – Input AC Port            | 25 |
| 13. | Immunity to Voltage Dips and Short Interruptions – Input AC Port | 26 |
| 14. | Test Equipment Used                                              | 27 |
| 15. | Glossary                                                         | 28 |

# 1. The Equipment Under Test (EUT)

### 1.1 General description

The Super Stallette Plus is a lightweight portable unit designed to be used in a variety of environments. By placing your hands in the basin the infrared sensor is triggered to start the wash cycle. The wash cycle delivers low pressure water that is instantly heated to temperatures of 40°C to 43°C for 10 seconds.

### 1.2 Test set-up

### Emissions

During the emissions tests the EUT was operated by triggering the infrared sensor which would activate the wash cycle. This meant that both the heater and the pump would operate simultaneously to produce instant heated water at low pressure. The wash cycle continued to operate for 10 seconds then stopped for a few seconds whilst the infrared sensor was triggered again. The wash cycles were repeated continuously during the emissions measurements.

### Immunity

During the immunity testing the EUT was left in a ready to operate state i.e. if the infrared sensor was triggered, the wash cycle would operate. After each immunity test was carried out, the function of the EUT was checked by triggering the infrared sensor to start the wash cycle.

### **1.3 Product Identification Plates**



### 1.4 Classification of the Equipment

The EUT is to be used within the residential, commercial and light industrial environments as specified by the manufacturer.

Page 5 of 28

# 2. Performance Criteria for Immunity Tests

The following performance criteria A, B and C are defined in section 4 of EN 61000-6-1:

### 2.2 Performance Criterion A

The equipment shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.

### 2.3 Performance Criterion B

The equipment shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.

### 2.4 Performance Criterion C

Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

# 3. EMC Modifications



During the conducted emissions testing, the QP measurements exceeded the specified limit. After the modifications to the input EMI filter shown above the emissions were found to be below the specified limit.



During the ESD test, a discharge to the area marked with yellow tape causes the EUT to reset, upon start up the EUT runs a purge cycle before returning to the ready to operate state.

# 4. Emissions – Low Voltage AC Port

### 4.1 Test Method

The conducted emissions of the product submitted for test were assessed within a screened room. The EUT was measured using a Quasi-Peak (QP) and average detector, the limits are given in Table 2 of EN 61000-6-3. A receiver was used in conjunction with an (AMN) Artificial Mains Network to measure the conducted noise content on the mains supply. Two scans were performed using an average and quasi-peak detector, both the average and the quasi-peak scans must not exceed the average and quasi-peak limits as specified in the standard.

### 4.2 Configuration

Refer to section 1.2 Test Setup (Emissions)



### **Pic: Conducted Emissions Testing**

### 4.3 Results

| Line    | Quasi-Peak<br>Limit | Average Limit |
|---------|---------------------|---------------|
| Live    | Pass                | Pass          |
| Neutral | Pass                | Pass          |

### Neutral Line – Average measurement

MV Average Pre-Measurement X Average Final Measurement

## **a =** Average Limit



| Final Measurements with the Average Detector |                   |                            |             |           |
|----------------------------------------------|-------------------|----------------------------|-------------|-----------|
| Frequency<br>(MHz)                           | Average<br>(dBuV) | Average<br>Limit<br>(dBuV) | Margin (dB) | Pass/Fail |
| 0.69                                         | 21.90             | 46                         | 24.10       | Pass      |
| 17.74                                        | 16.12             | 50                         | 33.88       | Pass      |
| 18.99                                        | 17.62             | 50                         | 32.38       | Pass      |
| 19.94                                        | 16.57             | 50                         | 33.43       | Pass      |
| 20.74                                        | 14.11             | 50                         | 35.89       | Pass      |

#### Neutral Line – Quasi-Peak measurement **///** Peak Measurement X Quasi-Peak Measurement



| Final Measurements with the QP Detector<br>Conducted Emissions – Neutral Line |                      |                               |             |           |
|-------------------------------------------------------------------------------|----------------------|-------------------------------|-------------|-----------|
| Frequency<br>(MHz)                                                            | Quasi peak<br>(dBuV) | Quasi peak<br>Limit<br>(dBuV) | Margin (dB) | Pass/Fail |
| 0.29                                                                          | 56.69                | 60.52                         | 3.83        | Pass      |
| 0.30                                                                          | 54.72                | 60.24                         | 5.52        | Pass      |
| 0.70                                                                          | 28.22                | 56                            | 27.78       | Pass      |

Page 10 of 28

### Live Line – Average measurement NV Average Pre-Measurement

X Average Final Measurement



| Final Measurements with the Average Detector<br>Conducted Emissions – Live Line |                   |                         |             |           |
|---------------------------------------------------------------------------------|-------------------|-------------------------|-------------|-----------|
| Frequency<br>(MHz)                                                              | Average<br>(dBuV) | Average Limit<br>(dBuV) | Margin (dB) | Pass/Fail |
| 0.70                                                                            | 22.63             | 46                      | 23.37       | Pass      |
| 17.87                                                                           | 16.99             | 50                      | 33.01       | Pass      |
| 18.69                                                                           | 17.50             | 50                      | 32.50       | Pass      |
| 19.36                                                                           | 17.27             | 50                      | 32.73       | Pass      |
| 19.99                                                                           | 15.81             | 50                      | 34.19       | Pass      |

# Live Line – Quasi-Peak measurement /// Peak Measurement X Quasi-Peak Measurement



| Final Measurements with the QP Detector<br>Conducted Emissions – Live Line |                      |                               |             |           |
|----------------------------------------------------------------------------|----------------------|-------------------------------|-------------|-----------|
| Frequency<br>(MHz)                                                         | Quasi peak<br>(dBuV) | Quasi peak<br>Limit<br>(dBuV) | Margin (dB) | Pass/Fail |
| 0.22                                                                       | 52.68                | 62.82                         | 10.14       | Pass      |
| 0.24                                                                       | 54.30                | 62.10                         | 7.80        | Pass      |
| 0.26                                                                       | 55.85                | 61.43                         | 5.58        | Pass      |
| 0.28                                                                       | 56.35                | 60.82                         | 4.47        | Pass      |
| 0.30                                                                       | 54.41                | 60.24                         | 5.83        | Pass      |
| 0.32                                                                       | 52.99                | 59.71                         | 6.72        | Pass      |
| 0.36                                                                       | 47.88                | 58.73                         | 10.85       | Pass      |
| 0.70                                                                       | 27.16                | 56                            | 28.84       | Pass      |
| 17.09                                                                      | 18.30                | 60                            | 41.70       | Pass      |
| 18.24                                                                      | 19.46                | 60                            | 40.54       | Pass      |

# 5. Radiated Emissions

### 5.1 Test Method

The radiated electromagnetic disturbances of the EUT were assessed in a semi-anechoic test chamber. The EUT was measured using Peak and Quasi-Peak (QP) detectors, the QP limit is given in EN 61000-6-3, Table 1. Tests were performed over the frequency range of 30 - 1000 MHz to determine if any radiated emissions were in excess or close to the specified limits. If the recorded measurements using the peak detector exceed or found to be close to the QP limit line then those points are re-measured using a QP detector. The emissions measurements were maximized by rotating the EUT and varying the height of the receiving antenna during the emissions scan, this ensures that the worse-case emissions are measured.

### 5.2 Configuration

Refer to section 1.2 Test Setup (Emissions)



## **Pic: Radiated Emissions Testing**

### 5.3 Results

| Frequency Range | Quasi-Peak<br>Limit<br>Horizontal | Quasi-Peak Limit<br>Vertical |
|-----------------|-----------------------------------|------------------------------|
| 30 – 1000 MHz   | Pass                              | Pass                         |



100.0

#### **Maximised Orientation – Horizontal Polarization NV** Peak X Quasi-peak

0.0

38.0 MHz

1000

| Final Measurements with the QP Detector<br>Radiated Emissions |                        |                                 |             |           |
|---------------------------------------------------------------|------------------------|---------------------------------|-------------|-----------|
| Frequency<br>(MHz)                                            | Quasi peak<br>(dBuV/m) | Quasi peak<br>Limit<br>(dBuV/m) | Margin (dB) | Pass/Fail |
| 30.30                                                         | 24.98                  | 40                              | 15.02       | Pass      |
| 81.36                                                         | 21.26                  | 40                              | 18.74       | Pass      |
| 192.12                                                        | 26.54                  | 40                              | 13.46       | Pass      |
| 497.82                                                        | 36.64                  | 47                              | 10.36       | Pass      |
| 821.82                                                        | 36.31                  | 47                              | 10.69       | Pass      |
| 838.02                                                        | 35.42                  | 47                              | 11.58       | Pass      |
| 866.04                                                        | 35.25                  | 47                              | 11.75       | Pass      |
| 995.88                                                        | 36.28                  | 47                              | 10.72       | Pass      |

Page 14 of 28 CE Marking Association, The Great Barn, Wootton Park, Alcester Road, Wootton Wawen, Henley-in-Arden, Warwickshire, B95 6HJ Tel: 01564 792349 info@cemarkingassociation.co.uk www.cemarkingassociation.co.uk



### Maximised Orientation – Vertical Polarization W Peak X Quasi-peak

**a =** QP Limit

**Final Measurements with the QP Detector Radiated Emissions** Quasi peak Margin (dB) Frequency Quasi peak Limit Pass/Fail (MHz) (dBuV/m) (dBuV/m) 47.64 19.13 40 20.87 Pass 40 50.64 18.77 21.23 Pass 51.36 18.27 40 21.73 Pass 52.92 18.22 40 21.78 Pass 21.70 53.94 18.30 40 Pass 21.33 55.08 18.67 40 Pass Pass 55.86 19.29 40 20.71 20<u>.17</u> 40 56.94 19.83 Pass 58.44 19.56 40 20.44 Pass 59.22 19.29 40 20.71 Pass 60.48 19.09 40 20.91 Pass 18.26 61.26 40 21.74 Pass 91.38 19.98 20.02 40 Pass 145.86 24.15 40 15.85 Pass

1000

# 6. Mains Harmonic Emissions

### 6.1 Test Method

The harmonic current emissions of the unit submitted for tests were assessed in accordance with EN 61000-3-2 for (Class A) equipment. A low impedance AC supply source with low distortion and high voltage stability was not used for the AC supply to the harmonics analyser due to the excessive load of the EUT. A harmonics analyser was used to measure the harmonics content introduced to the mains supply from the EUT. Tests were performed to determine if any harmonic current emissions were more than the specified limits. The emissions up to the 40th harmonic was measured from the EUT.

## 6.2 Configuration

Refer to section 1.2 Test Setup (Emissions)



### Pic: Mains Harmonic Emissions

### 6.3 Results

| Equipment Class in<br>EN 61000-3-2 | Rated Power | Limits                      | Result                  |
|------------------------------------|-------------|-----------------------------|-------------------------|
| Class A                            | 2545 Watts  | EUT > 75 W, limits<br>apply | Pass (see report below) |

### Mains Harmonic Emissions – Test Report

| Tested (<br>Equipment<br>Serial 1<br>Tested 1                                                                            | On<br>nt Unde<br>Number<br>by | :<br>er Test :<br>:     | 26 February<br>Super Stalle<br>2009399<br>CZ | 2019 16:32<br>tte +       | for 150 Second                     | ds.              |              |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|----------------------------------------------|---------------------------|------------------------------------|------------------|--------------|
| Supply V<br>Supply B                                                                                                     | Voltage<br>Fails              | e : 245.7<br>: Harmon   | to 246.1 Vrm<br>nic Requireme                | s 335.9 V]<br>nts Crest 3 | ok Frequency<br>Limits.            | : 49.98 to       | 50.04 Hz     |
| Load Por<br>Load Cur                                                                                                     | wer<br>rrent                  | : 1.00 t<br>: 0.2 to    | to 2545.00 W<br>o 11.0 Arms                  | 69 VA Powe<br>0.4 to 1    | er Factor 0.014<br>5.2 Apk Crest 1 | 4<br>Factor: 1.5 | 07           |
| Measurement Standard : EN61000-4-7:2002<br>Limits Applied : EN61000-3-2 No Limits, Actual Power below Minimum Threshold. |                               |                         |                                              |                           |                                    |                  |              |
| Harmonic<br>Number                                                                                                       | C                             | Limit<br>Current<br>Amp | Average<br>(filtered)<br>Amp                 | %<br>Limit                | max. Value<br>(Filtered)<br>Amp    | %<br>Limit       | Assessment   |
| Fundamer                                                                                                                 | ntal :                        |                         | 1.516                                        |                           |                                    |                  | _            |
| 2:                                                                                                                       |                               | 1.080                   | 0.025                                        | 2.3                       | 0.199                              | 18.4             | Pass         |
| 3:                                                                                                                       |                               | 2.300                   | 0.011                                        | 0.5                       | 0.097                              | 4.2              | Pass         |
| 4 :                                                                                                                      |                               | 0.430                   | 0.006                                        | 1.4                       | 0.063                              | 14.7             | Pass         |
| 5:                                                                                                                       |                               | 1.140                   | 0.090                                        | 7.9                       | 0.414                              | 36.3             | Pass         |
| 6:                                                                                                                       |                               | 0.300                   | 0.004                                        | 1.3                       | 0.043                              | 14.3             | Pass         |
| ·/ :                                                                                                                     |                               | 0.770                   | 0.033                                        | 4.3                       | 0.126                              | 16.4             | Pass         |
| 8:                                                                                                                       |                               | 0.230                   | 0.003                                        | 1.3                       | 0.032                              | 13.9             | Pass         |
| 9:                                                                                                                       |                               | 0.400                   | 0.005                                        | 1.3                       | 0.032                              | 8.0              | Pass         |
| 10 :                                                                                                                     |                               | 0.184                   | 0.002                                        | 1.1                       | 0.025                              | 13.6             | Pass         |
| 11 :                                                                                                                     |                               | 0.330                   | 0.009                                        | 2.7                       | 0.038                              | 11.5             | Pass         |
| 12 :                                                                                                                     |                               | 0.153                   | 0.002                                        | 1.3                       | 0.021                              | 13.7             | Pass         |
| 13 :                                                                                                                     |                               | 0.210                   | 0.005                                        | 2.4                       | 0.025                              | 11.9             | Pass         |
| 14 :                                                                                                                     |                               | 0.131                   | 0.002                                        | 1.5                       | 0.017                              | 13.0             | Pass         |
| 15 :                                                                                                                     |                               | 0.150                   | 0.003                                        | 2.0                       | 0.021                              | 14.0             | Pass         |
| 16 :                                                                                                                     |                               | 0.115                   | 0.002                                        | 1.7                       | 0.015                              | 13.0             | Pass         |
| 17 :                                                                                                                     |                               | 0.132                   | 0.007                                        | 5.3                       | 0.023                              | 17.4             | Pass         |
| 18 :                                                                                                                     |                               | 0.102                   | 0.002                                        | 2.0                       | 0.015                              | 14.7             | Pass         |
| 19 :                                                                                                                     |                               | 0.118                   | 0.005                                        | 4.2                       | 0.021                              | 17.8             | Pass         |
| 20 :                                                                                                                     |                               | 0.092                   | 0.002                                        | 2.2                       | 0.013                              | 14.1             | Pass         |
| 21 :                                                                                                                     |                               | 0.107                   | 0.004                                        | 3.7                       | 0.017                              | 15.9             | Pass         |
| 22 :                                                                                                                     |                               | 0.084                   | 0.003                                        | 3.6                       | 0.013                              | 15.5             | Pass         |
| 23 :                                                                                                                     |                               | 0.098                   | 0.005                                        | 5.1                       | 0.016                              | 16.3             | Pass         |
| 24 :                                                                                                                     |                               | 0.077                   | 0.003                                        | 3.9                       | 0.012                              | 15.6             | Pass         |
| 25 :                                                                                                                     |                               | 0.090                   | 0.008                                        | 8.9                       | 0.022                              | 24.4             | Pass         |
| 26 :                                                                                                                     |                               | 0.071                   | 0.003                                        | 4.2                       | 0.011                              | 15.5             | Pass         |
| 27 :                                                                                                                     |                               | 0.083                   | 0.007                                        | 8.4                       | 0.015                              | 18.1             | Pass         |
| 28 :                                                                                                                     |                               | 0.066                   | 0.004                                        | 6.L                       | 0.012                              | 18.2             | Pass         |
| 29 :                                                                                                                     |                               | 0.078                   | 0.010                                        | 12.8                      | 0.010                              | 20.5             | Pass         |
| 30 :<br>21 :                                                                                                             |                               | 0.081                   | 0.004                                        | 1.0                       | 0.012                              | 19.7             | Pass         |
| 31 :                                                                                                                     |                               | 0.073                   | 0.012                                        | 10.4                      | 0.017                              | 23.3<br>10.2     | Pass         |
| 32 :<br>32 :                                                                                                             |                               | 0.057                   | 0.004                                        | 7.0                       | 0.011                              | 19.5             | Pass         |
| 21 .                                                                                                                     |                               | 0.000                   | 0.000                                        | 0.0                       | 0.014                              | 20.0             | Lagg<br>Dage |
| 35 ·                                                                                                                     |                               | 0.054                   | 0.004                                        | 17 0                      | 0.011                              | 20.4             | Page         |
| 36.                                                                                                                      |                               | 0.004                   | 0.011                                        | ± / • ∠<br>7 Q            | 0.025                              | 19 6             | Dace         |
| 30.                                                                                                                      |                               | 0.051                   | 0.004                                        | 16 /                      | 0.010                              | 19.0<br>19.0     | Lass         |
| 30.                                                                                                                      |                               | 0.001                   | 0.010                                        | 10.4<br>0 0               | 0.020                              | 22.0             | rass<br>Dace |
| 30 .                                                                                                                     |                               | 0.040                   | 0.004                                        | 0.J<br>12 0               | 0.017                              | 20.0             | rass<br>Dace |
| 10 ·                                                                                                                     |                               | 0.000                   | 0.000                                        | 13.0                      | 0.010                              | 29.J<br>21 7     | Lass         |
| 21 - 39                                                                                                                  |                               | 0.251                   | 0.027                                        | 10 8                      | 0 054                              | 21 5             |              |
| JJ                                                                                                                       | •                             | 0.201                   | 0.02,                                        | -0.0                      | 0.001                              |                  |              |

# 7. Voltage Change and Voltage Fluctuations

### 7.1 Test Method

The voltage change and fluctuations generated by the EUT submitted for test were assessed in accordance with the limits given in Clause 5 of EN 61000-3-3. A low impedance AC supply source with low distortion and high voltage stability was not used for the AC supply due to the excessive load of the EUT. As stated in Clause 6 of EN 61000-3-3, the procedure described in Annex B of EN 61000-3-3 was used to measure the maximum relative voltage change for manually switched equipment. The maximum steady state voltage change was measured using the procedure set out in Annex A (A.12). The flicker assessment was not carried out on the basis that the EUT is a manually switched piece of equipment. Tests were performed to determine if any voltage change and fluctuations generated by the unit were in excess or close to the specified limits.

### 7.2 Configuration

Refer to section 1.2 Test Setup (Emissions)



### **Pic: Voltage Change and Voltage Fluctuations**

### 7.3 Results

| Parameter                                       | Limit    | Measured<br>value | Result |
|-------------------------------------------------|----------|-------------------|--------|
| $T_{max}$ exceeding 3.3%                        | > 500 ms | 20 ms             | Pass   |
| $d_{ m c}$ relative steady-state voltage change | 3.3%     | 2.04%             | Pass   |
| $d_{max}$ max relative voltage change           | 6%       | 4.37%             | Pass   |

# Voltage Change $d_{max}$ Test Report

Report Number : 740 Per Step Equipment Under Test : Super Stallette + Serial Number : 2009399 Tested by : CZ Supply Voltage : 231.1 to 240.9 Vrms 329.6 Vpk Frequency : 49.91 to 49.99 Hz Load Current : 0.2 to 11.1 Arms 0.4 to 15.2 Apk Crest Factor: 1.477 Test Method: EN61000-3-3:2008

Manual Results :

| 10:02:34 | 4.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 10:03:43 | 5.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:04:53 | 4.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:06:09 | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:07:44 | 5.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max                                                  |
| 10:08:51 | 4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:09:55 | 4.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:10:59 | 4.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:12:07 | 4.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:13:13 | 4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:14:20 | 4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:16:01 | 4.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:17:40 | 4.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:21:33 | 4.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:22:40 | 4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:24:53 | 4.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:26:30 | 4.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Min                                                  |
| 10:29:13 | 5.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:30:33 | 4.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:32:03 | 4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:33:20 | 4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:36:35 | 4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:38:10 | 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
| 10:39:40 | 4.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                    |
|          | 10:02:34<br>10:03:43<br>10:04:53<br>10:06:09<br>10:07:44<br>10:08:51<br>10:09:55<br>10:10:59<br>10:12:07<br>10:13:13<br>10:14:20<br>10:16:01<br>10:17:40<br>10:21:33<br>10:22:40<br>10:24:53<br>10:22:40<br>10:24:53<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:22:13<br>10:32:03<br>10:32:03<br>10:32:03<br>10:32:03<br>10:33:20<br>10:33:20<br>10:33:10<br>10:33:20<br>10:33:10<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:33:20<br>10:35:20<br>10:35:20<br>10:35:20<br>10:35:20<br>10:35:20<br>10:35:20<br>10:35:20<br>10:35:20<br>10:35:20<br>10:35: | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Combined Result : 4.37

Page **19** of **28** 

### Voltage Change and Voltage Fluctuations $d_c \& d_t$ Test Report

Max d(c) Between Any: 3.77%

: 12 March 2019 11:16 for 600 Seconds. Tested On Equipment Under Test : Super Stallette + Serial Number : 2009399 Tested by : CZ Supply Voltage : 234.1 to 243.6 Vrms 333.9 Vpk Frequency : 49.95 to 50.01 Hz Load Current : 0.2 to 11.3 Arms 0.4 to 15.7 Apk Crest Factor: 1.567 Test Method: EN61000-3-3:2008 Highest d(t) of 500ms: 2.04% PASS Present d(t) over 3.33%: 0.00 Seconds Longest d(t) over 3.33%: 0.02 Seconds Highest Steady State: +1.39% Lowest Steady State: -2.38% PASS Max d(c) Between Adjacent: 3.26%

# 8. Immunity to Electrostatic Discharge - Enclosure Port

### 8.1 Test Method

The immunity of the device submitted for test to electrostatic discharge was assessed in accordance with the methods given in specification EN 61000-4-2 as referred to in Table 1 of EN 61000-6-1. The unit was subjected to electrostatic discharges using a hand held ESD generator. Two modes of application were applied to the unit; these consisted of a contact discharge with an output voltage of 4kV and air discharge with an output voltage of up to and including 8kV, both were tested using positive and negative polarities. Direct application i.e. discharges directly to the relevant points on the EUT were tested using either a contact or air or both discharge applications. For indirect discharge application i.e. the simulation of electrostatic discharge to objects adjacent to the EUT, a vertical coupling plane was used.

### 8.2 Configuration

Refer to section 1.2 Test Setup (Immunity)



### **Pic: Electrostatic Discharge Testing**

### 8.3 Results

After modification as described in section 3, the EUT continued to function as intended with no errors or change of status. The EUT achieved performance criteria A, thereby exceeding the minimum requirements of performance criteria B.

# 9. Immunity to RF Electromagnetic Fields – Enclosure Port

### 9.1 Test Method

The method for RF electromagnetic field immunity was set according to EN 61000-4-3. The electromagnetic field was generated using a signal generator in conjunction with an RF amplifier and connected to the antenna located in a Fully Anechoic room (FAR). The antenna was placed 3m from the EUT with the antenna height set to 1.55m above the floor of the test chamber. The EUT was tested over a frequency of 80MHz - 1GHz and 1.4GHz - 2.7GHz with an amplitude modulation frequency of 1kHz with 80% depth. The carrier frequency was incremented logarithmically by 1%. The tests were carried out in both horizontal and vertical polarizations and all four sides of the EUT was tested each in turn.

### 9.2 Configuration

Refer to section 1.2 Test Setup (Immunity)



### Pic: Immunity to RF Electromagnetic Fields

### 9.3 Results

The EUT continued to function as intended with no errors or change of status. The EUT continued to function in accordance with the manufacturers specification thereby meeting the requirements for performance criteria Α.

Page 22 of 28

# 10. Immunity to Fast Transient Bursts – Input AC Port

### 10.1 Test Method

The immunity of the device submitted for test to fast transients was assessed in accordance with the methods given in specification EN61000-4-4 as referred to in Table 4 of EN 61000-6-1. The unit was subjected to fast transient bursts on the mains power supply as detailed in the basic standard EN61000-4-4 Figure 9. The fast-transient pulses were applied simultaneously between all supply lines to ground. The duration of each test was 1 minute and were tested using both positive and negative transients. Tests were performed to a level of +/-1kV with a rise time/pulse width of 5/50ns and with a repetition frequency of 5kHz.

### 10.2 Configuration

Refer to section 1.2 Test Setup (Immunity)



### **Pic. Fast Transients Testing**

### 10.3 Results

The EUT continued to function as intended with no errors or change of status. The EUT achieves performance criteria A, thereby exceeding the minimum requirements of performance criteria B.

# 11. Immunity to Surges – Input AC Port

### 11.1 Test Method

The immunity to surges on the device submitted for test was assessed in accordance with the methods given in specification EN 61000-4-5 as referred to in Table 4 of EN 61000-6-1. The unit was subjected to surges on the mains power port. A total of 30 surges were applied each in turn between line to line and lines to ground. Surges between lines and lines to ground was tested using both positive and negative surges and the tests were performed to a level of +/-1kV and +/-2kV respectively. A total of 10 surges were applied in each mode and were synchronised with the mains supply such that 5 positive and negative pulses were applied at phase angles of (0°, 90° and 270°). The time duration between each of the applied surges was 15 seconds.

## 11.2 Configuration

Refer to section 1.2 Test Setup (Immunity)

### **Pic. Surge Testing**



### 11.3 Results

| Application  | Voltage<br>Applied | Where<br>Applied | Polarity | <b>0</b> ° | 90°      | 270°     | Pass/Fail |
|--------------|--------------------|------------------|----------|------------|----------|----------|-----------|
|              | 1 4/               | L - N            | + ve     | 5 surges   | 5 surges | 5 surges | Pass      |
| AC Main Dart | IKV                |                  | - ve     | 5 surges   | 5 surges | 5 surges | Pass      |
| AC Main Poit | 2147               | L + N -          | + ve     | 5 surges   | 5 surges | 5 surges | Pass      |
|              | ZKV                | GND              | - ve     | 5 surges   | 5 surges | 5 surges | Pass      |

The EUT continued to function as intended with no errors or change of status. The EUT achieves performance criteria A, thereby exceeding the requirement of performance criteria B.

Page 24 of 28

# **12.** Immunity to Conducted RF Disturbances – Input AC Port

### 12.1 Test Method

The immunity of the unit submitted for test to conducted disturbances was assessed in accordance with the specification EN61000-4-6 as referred to in Table 4 of EN 61000-6-1. The EUT was subjected to an RF test level of 3Vrms with a 1kHz modulation at 80% depth in the frequency range from 150 kHz to 80 MHz. The RF disturbance was introduced using the direct CDN (Coupling Decoupling Network) method onto the AC mains.

### 12.2 Configuration

Refer to section 1.2 Test Setup (Immunity)

### **Pic. Conducted Immunity Testing**



### 12.3 Results

The EUT continued to function as intended with no errors or change of status. The EUT achieved performance criteria A, thereby meeting the requirement.

# **13.** Immunity to Voltage Dips and Short Interruptions – Input AC Port

### 13.1 Test Method

The immunity of the unit submitted for test to voltage dips and interruptions was assessed in accordance with the specification EN 61000-4-11 as referred to in Table 4 of EN 61000-6-1. The EUT was subjected to voltage dips at 100% reduction in line voltage for a period of 10ms and 20ms respectively, 30% reduction for a period of 500ms and a short interruption of the supply for a period of 5s. Each reduction and interruption were triggered synchronously on a 0° phase angle of the AC mains sinusoidal waveform.

### 13.2 Configuration

Refer to section 1.2 Test Setup (Immunity)

### Pic. Voltage Dips and Short Interruptions Testing



### 13.3 Results

| % of<br>Nominal<br>Voltage | Duration            | Number<br>Applied | Interval<br>Between Dips /<br>Interruptions | Phase<br>(angle) | Performance<br>Criteria | Performance<br>Criteria<br>Achieved | Pass/Fail |
|----------------------------|---------------------|-------------------|---------------------------------------------|------------------|-------------------------|-------------------------------------|-----------|
| 0 %                        | 0.5 cycle (10 ms)   | 10                | 10 seconds                                  | 0°               | В                       | A                                   | Pass      |
| 0 %                        | 1 cycles (20 ms)    | 10                | 10 seconds                                  | 0°               | В                       | А                                   | Pass      |
| 70 %                       | 25 cycles (500 ms)  | 10                | 10 seconds                                  | 0°               | С                       | В                                   | Pass      |
| 0 %                        | 250 cycles (5 secs) | 3                 | 10 seconds                                  | 0°               | С                       | С                                   | Pass      |

During the 30% dip of the nominal supply voltage for 500ms, the pressure of the water had reduced. After the test was completed and the supply was normalized, the EUT recovered to its normal operating condition. The EUT exceeds the minimum criteria B for 100% dips of the nominal supply voltage and meets the performance Criteria B and C for the 30% dip and short interruption respectively.

# 14. Test Equipment Used

The list below indicates the equipment used during the EMC testing. An X indicates item of equipment was used.

| Equipment Details                                                | Used |
|------------------------------------------------------------------|------|
| Emco 3143 Broadband Antenna                                      | Х    |
| AH Systems SAS571 Double Ridged Horn Antenna                     | Х    |
| Rohde and Schwarz EMC Receiver – ESHS 10                         | Х    |
| Rohde and Schwarz EMC Receiver – ESVS 10                         |      |
| Rohde and Schwarz EMC Receiver – ESPC                            |      |
| Rohde and Schwarz SMT 03 Signal Generator                        | Х    |
| Rohde and Schwarz SMY 02 Signal Generator                        |      |
| Rohde and Schwarz SMG Signal Generator                           | Х    |
| TTi HA1600A Harmonics, Flicker and Power Analyser                | Х    |
| TTi - 1000A Low Distortion Power Supply                          |      |
| ETPS EAC – SMM05R Single Phase AC Source                         |      |
| EM Test UCS 500M4 – Transient, Voltage Dips, Surge Generator     |      |
| Schaffner Best EMC v2.1 Transient, Voltage Dips, Surge Generator | Х    |
| Kalmus 737LC RF Power Amp                                        | Х    |
| Milmega AS0825-18 RF Power Amplifier                             | Х    |
| Rohde and Schwarz ESH3-Z5 Artificial Mains Network               | Х    |
| Mess Electonik Mains LISN – NNLK 8129                            |      |
| Hewlett Packard 11947A Transient Limiter 9 kHz – 200 MHz         | Х    |
| Rohde and Schwarz T Network                                      |      |
| Schaffner CDN M2/M3                                              | Х    |
| Schaffner CDN USB/pS                                             |      |
| Schaffner CDN T4S                                                |      |
| Schaffner CDN S501A                                              |      |
| Schaffner CDN126 Capacitive Coupling Clamp                       |      |
| EXP Fast Transient Clamp                                         |      |
| Schaffner NSG 453 ESD Simulator                                  |      |
| Schaffner Best EMC v2.1 ESD Generator                            | Х    |
| Vertical Coupling Plane                                          | Х    |
| Fischer Injection Clamp – F-140-A                                |      |
| Fischer Injection Clamp – F-120-9A                               |      |
| Solar Injection Clamp – 9120                                     |      |
| 6dB Attenuator                                                   | Х    |
| Holiday HI 6005 Isotropic Field Probe                            |      |
| H.P. 54502A Digitizing Oscilloscope                              |      |
| Elditest GE8115 High Impedance, High Voltage Differential Probe. |      |
| Philips Automatic Meter PM2519                                   |      |
| Fluke 83 Digital Multimeter                                      |      |

# 15. Glossary

| FUT   | Fauinment Under Test                           |
|-------|------------------------------------------------|
|       | Industrial Scientific and Madical              |
| 15111 | Rulla O except laiseties                       |
| BCI   | Bulk Current Injection                         |
| Hz    | Hertz (cycles per second)                      |
| kHz   | Hz x 10 <sup>3</sup>                           |
| MHz   | Hz x 10 <sup>6</sup>                           |
| GHz   | Hz x 10 <sup>9</sup>                           |
| PFC   | Power Factor Correction (Cos. 0)               |
| А     | Amperes                                        |
| V     | Volts                                          |
| kV    | V x 10 <sup>3</sup>                            |
| н     | Henries (Inductance)                           |
| mH    | H x 10 <sup>-3</sup>                           |
| μH    | H x 10 <sup>-6</sup>                           |
| F     | Farads (Capacitance)                           |
| mF    | F x 10 <sup>-3</sup>                           |
| μF    | F x 10 <sup>-6</sup>                           |
| Rt    | Rise Time                                      |
| Pw    | Pulse Width                                    |
| Ft    | Fall Time                                      |
| S     | Seconds                                        |
| ms    | S x 10 <sup>-3</sup>                           |
| μs    | S x 10 <sup>-6</sup>                           |
| dB/µV | Decibel/micro-volts. Ratio with 1 µV Reference |
| Р     | Peak                                           |
| QP    | Quasi Peak                                     |
| Av    | Average                                        |
|       | _                                              |

### END OF REPORT